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1. INTRODUCTION

• Theory of robust control of quantum dynamics in presence of noise/uncertainty in classical input variables or
the quantum Hamiltonian

• Based on control of moments with respect to these sources of uncertainty relevant to control of components of
the quantum state, unlike moments due to quantum uncertainty in the state of the system

• Such approaches are necessary foundations for model-based quantum control of molecular dynamics, or adaptive
feedback approaches that combine model-based strategies with learning control

2. CONTROL SYSTEM

• For linear systems with additive noise, it is possible to obtain an analytical solution for the time evolution of
the first and second moments of the state variables

• For example, linear Markovian diffusion process control (sde): dyt = Aytdt + Butdt + Ddωt (in the absence of
Butdt, this is the Ornstein-Uhlenbeck process)

• For bilinear systems (multiplicative noise) such an analytical solution does not exist

3. ROBUSTNESS OF CONTROLLED QUANTUM DYNAMICS

Here, we present an approach that can provide accurate estimates of the first and 2nd moments (and higher
moments if desired) of δJ suitable for use in either distributional or worst-case robustness criteria for controlled
quantum dynamics, along with bounds on the accuracy of those estimates. This approach is more accurate than
methods for moment calculations based on leading order Taylor expansions.

3.1. Pathways

• Expression for amplitude pathways

Umji (T ) =
( ı
~

)m ∑
~α∈M

K∏
k=1

Aαkk ×

∑
(k1,··· ,km)

N∑
lm−1

µjlm−1

∫ T

0

ei(ωjlm−1
tm) cos(ωkmtm + φ(ωkm))×

· · · ×
N∑
l1

µl11

∫ t2

0

ei(ωl1it1) cos(ωk1t1 + φ(ωk1)) dt1 · · · dtm
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where the sum
∑

(k1,··· ,km) is over all 1 ≤ ki ≤ K, i = 1, · · · ,m such that mode k appears in the multiple

integral αk times.

• Dipole pathways

Umji (T ) =
( ı
~

)m ∑
~α∈M

N−1∏
p=1,q>p

µαpqpq ×

∑
(l1,··· ,lm−1)

K∑
km=1

Akm

∫ T

0

ei(ωjlm−1
tm) cos(ωkmtm + φ(ωkm))×

· · · ×
K∑

k1=1

Ak1

∫ t2

0

ei(ωl1it1) cos(ωk1t1 + φ(ωk1)) dt1 · · · dtm

where the sum
∑

(l1,··· ,lm−1) is over all 1 ≤ li ≤ N, i = 1, · · · ,m− 1 such that frequency ±ωpq corresponding to

dipole parameters µpq, µqp appears in the multiple integral αpq times.

• Phase pathways

Uji(T, ~α) = exp

(
ı

K∑
k=1

αkφk

) ∞∑
m=mmin

( ı

2~

)m
×

∑
(k1,··· ,km)

K∏
k=1

A
bk(k1,··· ,km)
k

N∑
lm−1

µjlm−1

∫ T

0

eı(ωjlm−1
+ωkm )tm×

· · · ×
N∑
l1=1

µl1i

∫ t2

0

eı(ωl1i+ωk1 )t1 dt1 · · · dtm (1)

where ~α ∈ ZK , 1 ≤ |ki| ≤ K, ω−ki = −ωki , bk(k1, · · · , km) denotes the number of times mode k appears in the

multiple integral, and mmin =
∑K
k=1 |αk|. Note that a particular combination of phases in a phase pathway

does not uniquely specify the pathway order, unlike amplitude and dipole pathways.

• Amplitude pathways in terms of encoding/decoding

amplitude encoding :

Ak → Ake
ıγks,

Aαkk → Aαkk eı(αkγk)s,

where γk is the modulating frequency specific to the amplitude power αk associated with a particular pathway (~α).
Using the modulation, the Schrödinger equation can be propagated in the time variable t and dummy variable
s, for which the resulting encoded m-th order transition amplitude Umji (T, s) is comprised of the following terms:

Umji (T, s) =
( ı
~

)m ∑
~α∈M

Aα1
1 · · ·A

αK
K ei(α1γ1+···+αKγK)s ×

N∑
l1=1

· · ·
N∑

lm−1=1

µjlm−1
· · ·µl1i × · · · . (2)

The encoded total transition amplitude contain the following terms:

Uji(T, s) =

M∑
m=1

∑
~α∈M

Umji (T, ~α)ei(α1γ1+···+αKγK)s. (3)

Deconvolution of the total transition amplitude leads to

Uji(T, γ) =

∫ ∞
−∞

Uji(T, s)e
−iγs ds. (4)
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where γ ∈ [0, · · · , α1γ1 + · · · + αKγK ]. This suggests that all amplitude pathways of different orders can be
extracted through deconvolution of the encoded transition amplitude if all γ’s associated with each pathway is
uniquely known, i.e. Uji(T, γ = α1γ1 + · · ·+ αKγK)→ Umji (T, ~α). We can thus use 3 and 4 to concisely define
amplitude pathways ~α in ??.

• Dipole pathways in terms of encoding/decoding

Dipole encoding would reveal the contribution of the dipole moments in the transition amplitude. Here, each of
the dipole matrix elements is encoded with a Fourier function:

µij → µije
ıγijs,

µ
αij
ij → µ

αij
ij e

ı(αijγij)s,

i < j ∈ [1, N ].

The encoded and propagated unitary propagator consists of the different order dipole pathways with the encoded
total transition amplitude:

Uji(T, s) =

M∑
m=1

∑
~α∈M

Umji (T, ~α)ei(α12γ12+···+αN(N−1)γN(N−1))s. (5)

Deconvolution of the total transition amplitude leads to the decoded dipole pathway, i.e. Uji(T, γ = α12γ12 +
· · ·+ αN(N−1)γN(N−1))→ Umji (T, ~α). We can similarly use 5 to define dipole pathways in ??.

• Phase pathways in terms of encoding/decoding

For phase encoding, the modulation scheme is as follows:

eıφk → eı(φk+γks),

eıαkφk → e−ıαk(φk+γks), (6)

and the transition amplitude consists of:

Umji (T ) =
( ı
~

)m ∑
(α1,··· ,αK)

1

2

(
eı(α1(φ1+γ1)+···+αk(φK+γK)) + c.c.

)
×

Aα1
1 · · ·A

αK
K

N∑
lm−1=1

µjlm−1

∫ T

0

· · ·
N∑
l1=1

µl1i

∫ t2

0

· · ·

dt1 · · · dtm. (7)

Deconvolution of the transition amplitude term yields mth order phase pathways in a way identical to the
amplitude counterpart. Note that in the case of phase modulation, the encoding is Hermitian. Similarly,

3.2. First Moments

• Assuming θ1, · · · , θn are independent random variables, E[cji(T )] can then be expressed as follows (written
respectively for Re cji(T ), Im cji(T )):

E[Re, Im cji(T )] =
∑

(α1,··· ,αn)

Re, Im cα1,··· ,αnE[θα1
1 ] · · ·E[θαnn ]

• In some cases we will use the notation θ to denote the vector of uncertain or noisy parameters (either input or
Hamiltonian parameters)

• First moment for arbitrary quantum observables: general expression

ρ̃0 = R†ρ0R = diag (λ1, · · · , λN )

Õ = S†OS = diag (γ1, · · · , γN )

Ũ = S†UR
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• Let W (t) = exp
(
i
~H0t

)
• Then

E
[
J(Ũ)

]
= E

[
Tr
(
Ũ ρ̃0U

†Õ
)]

= E

∑
i,j

|Ũij |2γiλj


=
∑
i,j

γiλjE
[
|Ũij |2

]
=
∑
i,j

γiλjE
[
|(S†UR)ij |2

]
=
∑
i,j

γiλjE
[
|(S†W †UIR)ij |2

]
• Define Ũ ~αij and c̃~αij ’s in terms of expansion of elements Ũij(T )

• Decode Ũ(T, s) = S†W †(T )UI(T, s)R directly to obtain Ũ ~αij ’s

E

∑
i,j

|Ũij |2γiλj

 =
∑
i,j

(∑
~α

E
[
Ũ ~αij

]
+ 2Re

∑
~α′<~α

E
[
Ũ ~αijŨ

~α′,∗
ij

])
γiλj

3.3. Generalized expression for moments of quantum observables

• Review of encoding scheme (above)

• Let F (U(T, s)) = Tr
[
U(T, s)ρ0U

†(T, s)Θ
]

= Tr
[
UI(T, s)ρ0U

†
I (T, s)ΘI

]
= FI(UI(T, s)) denote the encoded

quantum observable expectation value. Alternatively, for robustness of quantum gate control, let F (U(T, s)) =
||W − U(T, s)||2, where W is the target gate. For robustness of a single transition amplitude, let F (U(T, s)) =
Re, Im Uji(T, s).

• For simplicity we drop the subscript I on both F and U ; both are understood to refer to the interaction picture

• Let γ′ = ~γ · ~α and ~α(γ′) = ~α′. Under a suitable encoding scheme (described above), ~α(·) then induces the
following bijection: U(T, γ)↔ U(T, ~α)

• The upper limit smax on s is determined by the maximum series order mmax, which is in turn determined by the
specified level of accuracy of the moment calculations according to the theory above. Let Γ = {0, ..., γf} denote
the set of encoding frequencies corresponding to the significant pathways (which is an infinite set for the exact
solution).

• Then the exact expression for the observable expectation value can be written in terms of the inverse FT with
respect to the encoding variable as follows in the case of amplitude noise:

E[F (U(T ))] =
∑
γ′∈Γ

∫ ∞
−∞

F (U(T, s)) exp(−iγs) ds · δ(γ, γ′) ·
E
[∏

k A
αk(γ′)
k

]
∏
A
αk(γ′)
k

• Note that an uncertain initial state estimate ρ0 (i.e., ρ̂0 and Σρ0) can be accommodated within the framework
by replacing ρ0 with ρ0(s), where the latter is any function of s such that the first and second moments match
ρ̂0 and Σρ0 .

• Covariances of Uij(T ) can also be obtained
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• For amplitude or dipole uncertainty, the FT can be restricted to the positive timelike axis, with the upper limit
of integration set to sf for the specified error tolerance on the moment calculation:

E[F (U(T ))] =
∑
γ′∈Γ

∫ sf

0

F (U(T, s)) exp(−iγs) ds · δ(γ, γ′) ·
E
[∏

k A
αk(γ′)
k

]
∏
A
αk(γ′)
k

• The same treatment can be applied to moments of transition amplitudes. The above formulation applies to any
F . E.g., when F (U(T, s)) = Re, Im(Unji(T, s)),

E[Re, Im Uji(T )] =
∑
γ′∈Γ

∫ sf

0

Re, Im Uji(T, s) exp(−iγs) ds · δ(γ, γ′) ·
E
[∏

k A
αk(γ′)
k

]
∏
A
αk(γ′)
k

• Expressions are analogous for dipole operator (control Hamiltonian) uncertainty

• The nth moment of F (U(T, s)) can be computed using the binomial expansion relating the moment to the
expectations of the first n powers of F (U(T, s))

• The expectation of the nth power of F (U(T )) can be written

E[Fn(U(T ))] =
∑
γ′∈Γ

∫ sf

0

Fn(U(T, s)) exp(−iγs) ds · δ(γ, γ′) ·
E
[∏

k A
αk(γ′)
k

]
∏
A
αk(γ′)
k

• We obtain any moment 〈(J − J̄)n〉 = 〈(F (U(T ))− F̄ (U(T )))n〉 through the binomial expansion:

〈(F (U(T ))− F̄ (U(T )))n〉 = 〈Fn(U(T ))〉 −
n∑
i=0

 n

i (n− i)

 〈F i(U(T ))〉(−F̄ (U(T )))n−i

• Once the state equations are solved in t, s to provide U(t, s) over [0, T ] and [0, sf ], any moment of F (U(T )) can
be calculated (within an error tolerance depending on sf )

• The above formulations provide moments of the observables and quantum interferences

• Expressions can also be provided in terms of quantum pathways

• For example, first moment of transition probability:

E [Pji(T )] = E
[
(Re cji(T ))

2
]

+ E
[
(Im cji(T ))

2
]

• which is comprised of the following terms:

E
[
(Re, Im cji(T ))

2
]

= E

[{ ∑
(α1,··· ,αn)

Re, Im cα1,··· ,αnA
α1
1 · · ·Aαnn

}2]
=

∑
(α1,··· ,αn)6=(α′1,··· ,α′n)

2Re, Im cα1,··· ,αncα′1,··· ,α′n E[A
α1+α′1
1 ] · · ·E[A

αn+α′n
n ]+

∑
(α1,··· ,αn)

Re, Im c2α1,··· ,αnE[A2α1
1 ] · · ·E[A2αn

n ]
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3.4. General noise and uncertainty distributions

• Expressions above for E[cji], var cji require expressions for higher moments of noisy/uncertain manipulated
input and system parameters like Ak, µij

• Higher moments can be provided in closed form for any uncertainty distribution for which there exists an
analytical Fourier transform

• Apply the characteristic (moment-generating) function φ(s) of the probability distribution function p(x) of the
manipulated input or system parameter:

φ(s) = 〈exp(ısx)〉 =

∫ ∞
−∞

p(x) exp(ısx) dx

• If φ(s) is available in closed form, the moments of x are obtained via

〈xn〉 = (−ı)n
[
∂n

∂sn
φ(s)

]
s=0

• Consider Gaussian noise: i.e., p(x) = 1√
2πσ2

exp
[

(x−µ)2

2σ2

]
• Then

φ(s) =

∫ ∞
−∞

p(x) exp(ısx) dx = exp

(
ıµs− σ2s2

2

)
• Moments:

〈xn〉(−ı)n
[
∂n

∂sn
exp

(
ıµs− σ2s2

2

)]
s=0

• Examples (may omit):

〈x3〉 = 3µσ2 + µ3

〈x4〉 = 3σ4 + 6µ2σ2 + µ4

• Applying the binomial expansion, we obtain any moment 〈(x− x̄)n〉

• For any odd moment, we find

〈xn〉 =

n∑
i=0

 n

i (n− i)

 〈xi〉(−µ)n−i

and hence 〈(x− x̄)n〉 = 0.

3.5. A generating function for quantum observable moment calculations

• The characteristic or moment-generating function provides moments of a distribution in terms of derivatives of
its Fourier transform

• It is possible to express the moments of quantum observables in terms of a type of generating function, through
two Fourier transforms

• Defining

φk(s′) = 〈exp(ıs′Ak)〉 =

∫ ∞
−∞

p(Ak) exp(ıs′Ak) dAk
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and assuming amplitude noise that is uncorrelated between modes, the generating function for the expectation
of the nth power of F (U(T )) can be written

f(γ, γ′, s′) =

∫ sf

0

Fn(U(T, s)) exp(−iγs) ds ·
∏
k φk(s′)∏
A
αk(γ′)
k

with the expectation expressed in terms of the generating function as

E[Fn(U(T ))] =
∑
γ′∈Γ

∫ sf

0

Fn(U(T, s)) exp(−iγs) ds · δ(γ, γ′) ·

∏
k(−ı)αk(γ′)

[
∂αk(γ′)

∂s′αk(γ′)φk(s′)
]
s′=0∏

A
αk(γ′)
k

• Note that by changing the
∑′
γ to run over a subset of Γ, we can extract expectations of specified interferences

(in the case n = 1) or any other subset of terms

• Similarly, the PMP first-order conditions for optimality for moments (see below) can be expressed in this form
as well

4. ROBUST CONTROL OF QUANTUM DYNAMICS

4.1. Pontryagin Maximum Principle for Quantum Robust Control

• The PMP for quantum control can be extended to control of moments

• For linear systems with additive noise, it is possible to obtain an analytical solution for the time evolution of
the first and second moments of the state variables (e.g. for the Ornstein-Uhlenbeck process)

• This is the basis for the linear quadratic (Gaussian) regulator (LQR/LQG) problems in feedback control, where
the first and second moments are generally controlled

• The LQG is derived in terms of the Hamilton-Jacobi-Bellman partial differential equations

• The LQG formulation is used in the theory of linear quantum filtering and real-time feedback control

• For bilinear systems (multiplicative noise) such an analytical solution does not exist

• However, it is possible to derive a PMP for quantum control of moments of any objective function in the presence
of field or Hamiltonian uncertainty, starting from the robustness analysis theory developed above

• This provides the theoretical foundation for model-based robust control of molecular quantum systems.

• It also has applications to the robust control of other bilinear systems with multiplicative noise.

• The state and costate equations for the robust qc PMP are partial differential equations.

• Both state and costate are functions of t and the timelike variable s

• A generalized expression for the moments of quantum observables is required in order to derive the PMP (see
above)

• The costate equation and PMP (first-order conditions for optimality) for quantum robust control can be derived
analogously to the deterministic quantum control PMP (derivation to be inserted)

• The costate equation for quantum robust control is a partial differential equation in t, s:

∂

∂t
φ(t, s) = − ı

~
HI(t, s)φ(t, s),

subject to the terminal boundary condition φ(T, s) = ∇UF (U(T, s))
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• Analogously to E[U(T )], the expectation of the quantum control costate at the final time, φ(T ), can be obtained
as follows for amplitude noise:

E[φ(T )] =
∑
γ′∈Γ

∫ sf

0

∇UF (U(T, s)) exp(−iγs) ds · δ(γ, γ′) ·
E
[∏

k A
αk(γ′)
k

]
∏
A
αk(γ′)
k

• Note E[φ(T )] 6= ∇UE[F (U(T ))]

• The PMP-Hamiltonian function for a state variable function of t, s (no Lagrange cost) is

H(x(t, s), φ(t, s), u(t)) = 〈φ(t, s), f(x(t, s), u(t))〉

• For quantum control,

H(U(t, s), φ(t, s), ε(t)) = 〈φ(t, s),− i
~
HI(t, s)U(t, s)〉

= − i
~

Tr {φ(t, s)HI(t, s)U(t, s)}

= − i
~

Tr
{
U†(T, s)∇UF (U(T, s))U†(t, s)µIε(t)U(t, s)

}
• Using the PMP-Hamiltonian function we can obtain first-order conditions for optimality of moments

• Expressing the Lagrangian in terms of H and integrating 〈φ(t), dU(t)
dt 〉 by parts, we get

J̄ = F (U(T )) − iTr(φ(T )U(T )) +
i

Tr
(φ(0)U(0))) +

∫ T

0

H(U(t), φ(t), ε(t)) + Tr

(
dφ(t)

dt
U(t)

)
dt,

• The first-order variation of this Lagrangian is

E
{
δJ̄
}

= Tr
(
E
[
∇U(T )F (U(T ))− φ†(T )

]
δU†(T )

)
+ Tr

(
E
[
φ†(0)

]
δU†(0)

)
+

+

∫ T

0

Tr

[
E

[
∇U(t)H+

dφ†(t)

dt

]
δU†(t)

]
+ E

[
∇ε(t)H

]
· δε(t) dt.

• This expression can be evaluated by first writing the s-evolved Lagrangian J̄ and then considering its first-order
variation

δJ̄ = Tr
([
∇U(T,s)F (U(T, s))− φ†(T, s)

]
δU†(T )

)
+ Tr

([
φ†(0, s)

]
δU†(0)

)
+

+

∫ T

0

Tr

[[
∇U(t,s)H+

∂φ†(t, s)

∂t

]
δU†(t)

]
+
[
∇ε(t)H

]
· δε(t) dt.

• The corresponding first-order conditions (Euler-Lagrange equations) follow from the requirement that δE
[
J̄
]

= 0
for any specified deterministic variation δε, and hence for any deterministic variation δU(t) .

• If the uncertainty is in the system Hamiltonian, E
[
∇ε(t)H

]
= ∇ε(t)E [H]

• For control Hamiltonian uncertainty with parameter vector θ,

E[
∂

∂ε(t)
H(U, φ, ε)] =

∂

∂ε(t)
E[H(U, φ, ε)]

=
∂

∂ε(t)

∑
γ′∈Γ

〈φ(t, s),− i
~
HI(t, s)U(t, s)〉 exp(ıγs) ds δ(γ, γ′)

E[
∏
k θ

αk(γ′)
k ]∏

k θ
αk(γ′)
k

= − i
~
∑
γ′∈Γ

Tr
{
U†(T, s)∇UF (U(T, s))U†(t, s)µIU(t, s)

}
exp(−ıγs) ds ×

× δ(γ, γ′)
E[
∏
k θ

αk(γ′)
k ]∏

k θ
αk(γ′)
k

which can be written in terms of the t- and s-evolved dipole operator µI(t, s) = U†(t, s)µIU(t, s)
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• The explicit forms of ∇UF (U) for observables and gates can be substituted above

• The first-order condition is E[ ∂
∂ε(t)H(U, φ, ε)] = 0, ∀t ∈ [0, T ]

• Note that the first-order conditions are above are written for direct optimization of ε(t) in the time domain, but
the first-order condition can also be written in the frequency domain

• Using the PMP-Hamiltonian function we can obtain first-order conditions for optimality of moments

• For amplitude uncertainty,

E[
∂

∂A(ω)
H(U, φ,A] =

= − i
~
∑
γ′∈Γ

∫ sf

0

Tr
{
U†(ωf , s)∇UF (U(ωf , s))U

†(ω, s)µIU(ω, s)
}

exp(−ıγs) ds ×

× δ(γ, γ′)
E[
∏
k A

αk(γ′)
k ]∏

k A
αk(γ′)
k

• Here, Ak = A(ωk) denotes a subset of noisy amplitude modes

• Note that use of the PMP for amplitude noise implies that the control optimization is executed in the frequency
domain through modification any of the amplitudes A(ω), of which the above subset is subject to noise

5. LEADING ORDER TAYLOR EXPANSIONS

The eventual goal of robustness analysis is to understand how a control field achieves robust transition amplitude
and probability when distribution is present in the control or system parameters. We consider robustness of the control
performance measure (e.g., transition probability) to variations δθ in the parameters. Assuming the covariance matrix
of parameter estimates is available as in (??), the posterior distribution of δθ is modeled as a multivariate normal

distribution, i.e., θ ∼ N (θ̂,Σ). Through choice of a confidence level c, we can specify the set of possible realizations
of δθ corresponding to that confidence level as:

Θ = {δθ | δθTΣ−1δθ ≤ χ2
K(c)}

δθ = θ − θ̂, (8)

where χ2
K denotes the chi-square distribution with K degrees of freedom, K denoting the number of noisy or uncertain

parameters. The distribution of δθ can be used to estimate the corresponding distribution of the control performance
measure J . Let J = Pji, the transition probability between states i and j, and consider the case of dipole operator
uncertainty as an example. With a 1st order Taylor expansion, the only distribution function that can be derived is
a normal distribution with variance

σ2
J ≈ Tr

[
Σ∇θJ(∇θJ)T

]
, (9)

where

[∇θJ ]i = −ıTr

{
|i〉〈i|, U†(T )|j〉〈j|U(T )×∫ T

0

U†(t)Xiε(t)U(t) dt

}
, (10)

and Xi is the Hermitian matrix obtained by setting θi = 1, θj = 0, j 6= i in µ(θ). Then assuming a normal distribution
for J with variance σ2

J , the worst case deviation of the performance measure can be defined as the lower boundary of
the c-confidence interval, i.e.

J ∼ N (J(θ̂), σ2
J), (11)

δJ = −
√

2σJ erf−1(c), (12)

Jwc = J(θ̂)−
√

2σJ erf−1(c). (13)

With higher order Taylor expansions, one cannot derive a distribution function for δJ analytically; one cannot obtain
higher moments from higher order Taylor expansions.
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• The transition probability is one objective function that can be expressed in terms of the amplitudes cji. Here
we consider leading order Taylor approximations for its moments (note these can be obtained more accurately
using the expressions above)

• We have

E[δJ ] ≈ 1

2

∫ T

0

∫ T

0

H(t, t′)E [δu(t)δu(t′)] dt dt′O(||Σ||3)

=
1

2

∫ T

0

∫ T

0

H(t, t′)acf(t, t′) dt dt′

• Consider Hessian nullspace; H(t, t′) is finite rank kernel:

H(t, t′) = Tr {ρΘ(T )[µ(t), µ(t′)]+ −Θ(T )(µ(t)ρµ(t′) + µ(t′)ρµ(t))}

which has rank 2N − 2, where N is Hilbert space dimension, for state-to-state population transfer.
Prospect: Thus to second order, field noise at most frequencies does not affect population transfer

• To second order, laser noise can only decrease E[Jnom + δJ ] since Hessian is negative semidefinite

• A first-order approximation to the variance of population transfer fidelity due to field noise can be found in
closed form:

var J ≈
∫ T

0

∫ T

0

E [δε(t)δε(t′)]
δJ

δε(t)

δJ

δε(t′)
dt dt′,

=

∫ T

0

∫ T

0

acf(t, t′)
δJ

δε(t)

δJ

δε(t′)
dt dt′

where

δJ

δε(t)
= Tr {[ρ0,Θ(T )]µ(t)}

• A first-order approximation to the variance of population transfer fidelity due to Hamiltonian parameter uncer-
tainty can be found in closed form:

var J ≈ Tr
[
Σ∇θJ(∇θJ)T

]
,

where

[∇θJ ]i = −iTr

{
[ρ0,Θ(T )]

∫ T

0

U†(t)Xiε(t)U(t) dt

}
and Xi is the Hermitian matrix obtained by setting θi = 1, θj = 0, j 6= i in µ(θ).

• The leading term in the expansion for E[δJ ] due to parameter uncertainty is of 2nd order:

E[δJ ] ≈ 1

2
E[δθTH(θ, θ′)δθ]

≈ 1

2
Tr (ΣH(θ, θ′))

where H(θ, θ′) = d2J
dθdθ′ denotes the Hessian matrix with respect to Hamiltonian parameters

• Parameter uncertainty can improve E[J ]; consider overlap:

Tr (ΣH(θ, θ′)) = Tr
(
V ΛV TWΓWT

)
= Tr

(
ΛṼ ΓṼ T

)
where Λ ≥ 0, and Ṽ is an orthogonal matrix
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• How to search for fields where, given uncertainty spectrum, overlap with the directions in parameter space
associated with largest positive eigenvalues maximized

• H(θ, θ′) = d2J
dθdθ′ :

H(i, j) = Tr{ρΘ(T )

∫ T

0

iU†(t)Xjε(t)U(t) dt

∫ T

0

iU†(t)Xiε(t)U(t) dt+

Θ(T )ρ

∫ T

0

iU†(t)Xiε(t)U(t) dt

∫ T

0

iU†(t)Xjε(t)U(t) dt−∫ T

0

iU†(t)Xiε(t)U(t) dt ρ

∫ T

0

iU†(t)Xjε(t)U(t) dt Θ(T )−∫ T

0

iU†(t)Xjε(t)U(t) dt ρ

∫ T

0

iU†(t)Xiε(t)U(t) dt Θ(T )+

[ρ,Θ(T )]

∫ T

0

iU†(t)Xiε(t)U(t)

∫ t

0

iU†(t′)Xjε(t
′)U(t′) dt′dt}+

− [ρ,Θ(T )]

∫ T

0

∫ t

0

iU†(t′)Xjε(t
′)U(t′) dt′ iU†(t)Xiε(t)U(t) dt

6. WORST-CASE ROBUSTNESS ANALYSIS AND CONTROL

As noted above, worst-case robustness analysis can also be carried out based on constrained maximization of the
distance between the nominal and worst-case values of the performance measure. These approaches are based on
leading order Taylor expansions. For example, in a first-order formulation, the problem can be expressed as

max
δθ∈Θ

|δJ |2 ≈ δθT (∇θJ)T∇θJδθ, (14)

where Θ was defined in (8) and ∇θJ in (10) (assuming J = Pji). If we let x = χ−1
K (c)Qδθ, where QTQ = Σ, then:

|δJ |2 = χ2
K(c)xTQT (∇θJ)T∇θJQx. (15)

Under this change of variables, the constraints are mapped as:

δθTΣ−1δθ ≤ χ2
K(c)→ xTx ≤ 1, (16)

and the constrained maximization problems are mapped as follows:

max
δθ∈Θ

|δJ |2 → max
xT x≤1

χ2(c)xTQT (∇θJ)T (∇θJ)Qx. (17)

This problem has the form of a Rayleigh quotient [? ], which has an analytical solution for Jwc and θwc written in
terms of a singular value decomposition. However, since the formulation is first order, it is subject to the same issues
of accuracy noted above. Future work will compare the accuracy of these various approaches to estimation of Jwc for
quantum control systems.

7. QUANTUM ROBUST CONTROL ALGORITHMS

• Pareto Tradeoffs in Robust Control

• Pareto frontier of robust control solutions:

{ε̄(t) | J1(ε(t)) ≤ J1(ε̄(t)) ∨ J2(ε(t)) ≤ J2(ε̄(t)), ∀ε(t) 6= ε̄(t)}

• E.g., J1(ε(t)) = E[J(ε(t)]], J2(ε(t)) = −std J(ε(t)) or J2(ε(t)) = Jwc(ε(t))
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• Importance/interpretation of user preferences: would one prefer lower expected performance with more reliabil-
ity?

• Problems with unconstrained optimization approaches

• Expressions above for var J , E[δJ ] are approximations: inaccuracies can reduce fidelity if E[J ] used at each step
of ε(t) optimization

• Instead i) maximize nominal population transfer Jnom using only true value θ0; ii) constrain Jmax
nom and find fields

ε(t) that minimize var J or maximize E[δJ ].

• Alternatively, use robust optimization with the accurate expressions for moments obtained with MI

7.1. Deterministic algorithms

• Constrained nonlinear control optimization

• To obtain an expression for δε(t) that maximize or minimize auxiliary costs while holding Jmax
nom , solve the

Fredholm integral equation of the first kind ∫ T

0

δJ

δε(t)
δε(t) dt = 0, (18)

with kernel δJ
δε(t) , for δε(t).

• Since this integral equation has a separable kernel, it can be solved by writing the unknown vector function
δε(t) in terms of δJ

δε(t) ; then δε(t) = c δJ
δε(t) + f(t) (where f(t) is a free function, since the integral equation is

underspecified) and we have ∫ T

0

(
δJ

δε(t)

)2

dt+

∫ T

0

f(t)
δJ

δε(t)
dt = 0.

• Solving for c, we find c = −[
∫ T

0

(
δJ
δε(t)

)2

dt]−1
∫ T

0
f(t) δJ

δε(t) dt].

• Then δε(t) = f(t)− [
∫ T

0

(
δJ

δε(t′)

)2

dt′]−1 δJ
δε(t)

∫ T
0
f(t′) δJ

δε(t′) dt
′

• The following equations can be derived by extension of the approaches described in Chakrabarti, Wu and Rabitz,
Quantum Multiobservable Control (2008).

• To explore fields holding constant high values of J and E[δJ ] while reducing var J , let

a(s, t) =
δJ

δε(s, t)
= −iTr{[ρ0, O(T )]µ(s, t)}

g(s, t) =
δE[δJ ]

δε(s, t)

f(s, t) =
δvar J

δε(s, t)

• Then propagate

∂ε(s, t)

∂s
= f(s, t)−

[∫ T

0

[a(s, t′) g(s, t′)]f(s, t′) dt′

]T
Γ−1
s [a(s, t′), g(s, t′)]

where Γs =
∫ T

0
[a(s, t′) g(s, t′)][a(s, t′) g(s, t′)]T dt′.
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• Setting f(t) to the functional derivative of the appropriate auxiliary cost, and choosing ε(0, t) = ε̄(t), one can
then solve the constrained optimization problem by iteratively solving for δε(s, t), with iterations indexed by
algorithmic parameter s.

• To explore fields holding a constant high value of E[J ] while reducing var J , solve

∂ε(s, t)

∂s
= f(s, t)− a(s, t)∫ T

0
a2(s, t′) dt′

∫ T

0

f(s, t′)a(s, t′) dt′

a(s, t) =
δJ

δε(s, t)
+
δE[δJ ]

δε(s, t)

f(s, t) =
δ var J

δε(s, t)

• To maximize E[J ] for given risk level (var J or Jwc), switch the definitions of a(s, t) and f(s, t)

• Joint field/parameter-based robust control approaches

• Prospect: Multiplicity of control solutions and flexible pulse shaping permits formulation of Hamiltonian
parameter uncertainty robustness criteria as constraints

• Since field uncertainty less severe, minimize var J or maximize E[J ] due to field pdf among fields obtained above

• To explore fields holding a constant high value of Eε(t) [J ] while reducing varθ J , formulation is analogous to
above

• Approximate gradient with Dyson series via MI methods described above

• For example,

δ

δA1
Re, Im cji(T ) =

∑
(α1,··· ,αn)

Re, Im cα1,··· ,αnα1A
α1−1
1 · · ·Aαnn

δ

δA1
E[Re, Im cji(T )] =

∑
(α1,··· ,αn)

Re, Im cα1,··· ,αnα1E[Aα1−1
1 ] · · ·E[Aαnn ]

δ

δA1
var (Re, Im cji(T )) = E

[{ ∑
(α1,··· ,αn)

Re, Im cα1,··· ,αn×

×
(
α1A

α1−1
1 · · ·Aαnn − α1E[Aα1−1

1 ] · · ·E[Aαnn ]
)}2]

where the latter two expressions follow from the fact that E is a linear operator. encoding and apply one

additional FFT of
∫
U†I (s, t)µUI(s, t) exp(ıωt) dt into γ domain; would need to write expressions for each term

in modulated Dyson series, divide by amplitudes to obtain time-domain integrals, then update amplitudes with
fixed integrals until amplitudes exceed a specified tolerance

• Less expensive to evaluate - reevaluation of time-domain integrals not needed at each iteration

• Update MI periodically given tolerance setting

• Compare to the expression provided by the PMP for quantum robust control

• All the above expressions for deterministic robust control optimization algorithms carry over to the frequency
domain with time-domain gradient a(s, t) replaced by frequency-domain gradient a(ω, t), f(s, t), g(s, t) replaced
by f(s, ω), g(s, ω)
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8. NUMERICAL IMPLEMENTATION

8.1. Fourier Encoding

• Encoding of subset of parameters subject to uncertainty

θk → θk exp(iγks), k = 1, ..., n; n ≤ nmax.

Here, unlike the fully encoded equations previously reported, nmax denotes the total number of parameters.

• Assumes uncertainty is in parameters 1,...,n only; without loss of generality, can renumber the parameters so
the ones subject to uncertainty are the first n parameters.

• Extract all terms containing θα1
1 ....θαnn , through amplitude

Uji(T, γ = α1γ1 + ... + αnγn) (compare analogous expressions from previously reported robustness analysis
above, where there was no sum over unencoded parameters):

Uji(T, γ = α1γ1 + ...+ αnγn) =

= θα1
1 ...θαnn

[
(im1)

nmax∑
k1=n+1

θk1 ...

nmax∑
km1=n+1

θkm1
...+

+ (im2)

nmax∑
k1=n+1

θk1 ...

nmax∑
km2=n+1

θkm2
...+ ...

]

• The coefficient cα1,...,αn , which is written without specification of a constraint on the αi’s, contains contributions
from many different orders

• Hence note for subset encoding m =
∑
i αi is not a Dyson series order. However, it plays an important role in

determining the effect of noise on the pathway norm and interferences involving that pathway, since the ratio
E[

∏
k θk]∏
k θk

depends on m not the Dyson series order.

• Effect on scaling of required memory - replace nmodes or nmax with the –number of encoded modes–.

8.2. Fourier Decoding

9. RESULTS: EXAMPLE

9.1. Comparison of robustness analysis and robust control based on PMP to leading order and worst-case
approximations

10. SUMMARY AND PROSPECTIVE

11. APPENDIX

The upper bound of pathway calculation is:

|c~α| ≤
N∑
l1=1

· · ·
N∑

lm−1=1

dm
∣∣∣∣ ∫ T

0

eı(ωjlm−1
tm) cos(ωkmtm + φ(ωkm))×

· · · ×
∫ tm−1

0

eı(ωl1it1) cos(ωk1t1 + φ(ωk1)) dt1 · · · dtm
∣∣∣∣

≤
N∑
l1=1

· · ·
N∑

lm−1=1

dm
Tm

m!
≤ Nm−1dm

Tm

m!
=

(NdT )m

Nm!
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where |〈j|µ|i〉| < d, and i, j ∈ [1, N ]. Correspondingly, the upper bound of the Dyson term is given as:

|E[Umji (T )]| ≤ (NdT )m

Nm!

∑
~α

K∏
k=1

E[Aαkk ]

The upper bound on the error associated with the robustness calculations can in turn be determined:

E[Uji(T )]−
M∑
m=1

E[Umji (T )] =

∞∑
m=M

E[Umji (T )]

where ∣∣∣∣ ∞∑
m=mmax

E[Umji (T )]

∣∣∣∣ ≤ ∞∑
m=mmax

(NdT )m

Nm!

∑
~α

K∏
k=1

E[Aαkk ]

∞∑
m=mmax

(NdT )m

Nm!

∑
~α

K∏
k=1

E[Aαkk ] ≈
meps∑

m=mmax

(NdT )m

Nm!

∑
~α

K∏
k=1

E[Aαkk ] (19)

11.1. Bounds on series expansion terms for first moment of the transition probability

∣∣∣∣E [(Re, Im cji(T ))
2
]∣∣∣∣ ≤ mmax∑

m=2

∑
m′<m

{
2

(NdT )m+m′

N2m!m′!

∑
(α1,··· ,αn)6=(α′1,··· ,α′n)

E[A
α1+α′1
1 ] · · ·E[A

αn+α′n
n ]

}
+

+

mmax∑
m=1

(NdT )2m

(Nm!)2

{ ∑
(α1,··· ,αn)

E[A2α1
1 ] · · ·E[A2αn

n ]

}
,

∑
k

αk = m,
∑
k′

α′k = m′, m,m′ ∈ [1,mmax]

• E
[
(Re, Im cji(T ))

2
]

=
∑mmax

m=1 E
[
(Re, Im cji(T ))

2
m

]
∣∣∣∣E [(Re, Im cji(T ))

2
m

]∣∣∣∣ ≤ ∑
m′<m

2
(NdT )m+m′

N2m!m′!

∑
(α1,··· ,αn) 6=(α′1,··· ,α′n)

E[A
α1+α′1
1 ] · · ·E[A

αn+α′n
n ]+

+
(NdT )2m

(Nm!)2

∑
(α1,··· ,αn)

E[A2α1
1 ] · · ·E[A2αn

n ],

∑
k

αk = m,
∑
k′

α′k = m′, m,m′ ∈ [1,mmax]

• Check this bound numerically and plot vs m

∣∣∣∣E [Pmji (T )
]∣∣∣∣ ≤ ∑

m′<m

4
(NdT )m+m′

N2m!m′!

∑
(α1,··· ,αn)6=(α′1,··· ,α′n)

E[A
α1+α′1
1 ] · · ·E[A

αn+α′n
n ]+

+ 2
(NdT )2m

(Nm!)2

∑
(α1,··· ,αn)

E[A2α1
1 ] · · ·E[A2αn

n ],

∑
k

αk = m,
∑
k′

α′k = m′, m,m′ ∈ [1,mmax]
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11.2. Maximum series order computation: first moment of the transition probability

• mmax = max m such that

∑
m′<m

4
(NdT )m+m′

N2m!m′!

∑
(α1,··· ,αn)6=(α′1,··· ,α′n)

E[A
α1+α′1
1 ] · · ·E[A

αn+α′n
n ]+

+ 2
(NdT )2m

(Nm!)2

∑
(α1,··· ,αn)

E[A2α1
1 ] · · ·E[A2αn

n ] ≥ ε,

∑
k

αk = m,
∑
k′

α′k = m′

• Bound on accuracy: E[Pji(T )]−
∑mmax

m=1 E[Pmji (T )] =
∑∞
m=mmax

E[Pmji (T )];

∑
(α1,··· ,αn) 6=(α′1,··· ,α′n)

E[A
α1+α′1
1 ] · · ·E[A

αn+α′n
n ]

}
+

E[A2αn
n ]

}
,

where meps denotes the smallest m such that ≤ eps, eps denoting the smallest floating point number that can
be represented on the computer

• Compute mmax and bound on error for specified ε

• Note, it is possible to derive an analytical bound on the error, but it is less accurate and not necessary

• Frequency domain gradient

δU(T ) = −ıU(T )

∫ T

0

U†(t)µδε(t)U(t) dt

= − ı
2
U(T )

∫ ∞
−∞

dω δA(ω)

∫ T

0

µ(t)[exp(ıωt) exp(ıφ(ω)) + exp(−ıωt) exp(−ıφ(ω))] dt

δU(T )

δA(ω)
= − ı

2
U(T )

∫ T

0

µ(t)[exp(ıωt) exp(ıφ(ω)) + exp(−ıωt) exp(−ıφ(ω))] dt

= − ı
2
U(T )

{
exp(ıφ(ω))

∫ T

0

µ(t) exp(ıωt) dt+ exp(−ıφ(ω))

∫ T

0

µ(t) exp(−ıωt) dt

}

• Compute time-domain integrals efficiently through FFT of µ(t) (N(N + 1)/2 FFTs of complex functions - N
diagonal elements are real-valued) - Fourier transform provides both 1st and 2nd integrals above via µ(ω) at all
frequencies ω

• For a given J , only need to compute FFT of one scalar function of time.
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